

The information in this manual has been
reviewed and is believed o be entirely reliable.
Mo responsibility, however, is assumed for
inaccuracies. The material in this manual is for

information purposes only, ond is subjectto
change without notice.

© 1982 COMMODORE INTERNATIONAL
All rights reserved. No part of this progrom or
accompanying instruction leatlet may be
duplicated, copied, transmitted or reproduced
in any form or by any means without the prior
written permission of Commodore Home

Computer Division,

Commodore Home Computer Division
675 Ajax Avenue, Slough Trading Estate,
Slough, Berks, SL1 4BG England.

Printed in England

MACHINE CODE MONITOR
(VICMON) USER MANUAL

TABLE OF CONTENTS

Section One — Introduction to VICMON

1.1 3T EoTe (¥ Tt {1 ¥ IR e e aaeeaa .
1.2 Tha VICMON Manual . ..o e e e e e 1
1.3 VICMON FUNCHONS Lot titainis e tate e sm i satetosrrersssersneisnsonsssns -
1.4 Starting the VICMON System ... e iaians S 1
1.5 CommOnd FOrmt L. . ot e st o et et e et e et e e m ettt ey 2
1.6 Entering Commands e iaieaaicaaaaaaas 2
1.7 1= LT = 14T = £ S 2
Section Two — The Commands of VICMON

2.1 Lo o T O 3
2.2 OV OIS L e e e - 3
23 The Commandsc.ie e rrareia et amnr s atnsrasasnsasnenieasasasessaress .3
2.3 A — AssemMble .o e e .3
232 B —Breckpoint _._.............c. ... ey e erererans 3
233 D — Disossemble ... e e e e e e e 4
234 E —EnableVirtual Zero Page 5
235 F — Fill Memomy .o rooreniinrssrrarsterrannaesr et s srar et 5
g € T 5
0 B o B o 11 6
238 I —Interprel .. 6
A I e 1 7
L T B s 7
2311 M — Mﬂmur}' Display . e 7
2312 N —Number e aierians ekt e b e ke 8
2313 G — Quick Troce . . o e 8
/B G o 1T 9
2315 RB—Remove Breakpoint ..o e e 7
0 B . T T L 9
N T I R T ¢
2308 W —Walk .. a i e a e r ety e 19
2319 X —ExditloBasic e 9
Section Three — Using VICMON as a Debugging Tool

3.1 T 1T o T o 1
32 The Example Progrom ... oot i ia e i e e et 1
3.3 The Program eaieeaeaaaan 12
3.3.1 Inputting the Programoierevinrirarnrrnines e e ety 12
3.3.2 Locating the Fnu?i L e e e ee e emaeame e men e naan et ann 12
3.4 SUTTIITE I Y 4w et s ot ms an tosm o msr s n e s e o n s m b n et a e e e e e e ey 14
I e 15

v

“
@
c
¢

Gl L2 Gl NI I B R —
Cud) md h ad B st s W

TABLE OF FIGURES

Register Display

An Example Initial VICMON Displayociiiiiiiiiisiiisiiarrisarairaiaies

--

Example of Character String Displayo

Display Printable Characters . .,
An Exomple of Register Displays
Flowchart of Example Progrom

¥ O W O} A OE N B E E R R OE &S NS kS N E P @ E &S mEEEE RSN E N EE kSN &S EE W

lll

--

Result of First Attempt to Run Example Program viiniisiraieen -,

Screen Filled with A's

aa

A e

SECTION ONE
INTRODUCTION TO VICMON

1.1 Introduction

VICMON is the nickname of the hexadecimal
machine code monitor designed to enable easy
debugging of machine code programs which
are resident in a YIC 20 computer system.

This manual does not set out to teach machine
code programming on the VIC. Before atempfing
to use machine code on the VIC you should refer
ta the following:

MOS 6502 Programming Manuals

VIC Programmers’ Reterence Guide

VIC Zero Page Memory Map.
Useful reading:

6502 Assembly Language Programming
by Leventhal,
These are available from most COMMODORE

Computer dealers,

VICMON and this manual are intended for use
by people with some programming experience
and some knowledge of 6502 CBM machine
code programming, but a high level of expertise
i5 not required

1.2 The VICMON Manual

This manual is divided into three paris which
are outlined below.
SECTION ONE — INTRODUCTION TO

VICMON

This sechion outlines VICMON in general
terms. It explains the conventions used by this
manual when describing the command formats,
How o start VICMON is also included.
SECTION TWO — THE COMMANDS OF

VICMON
In this section, each VICMON command is

explained, its format shown and an example
given. The commands are in alphabetical order.

SECTION THREE — USING VICMON AS A
DEBUGGING TOOL
This section uses an actual machine language
I::rn-grnm to shaw how VICMON can be used to

ate faults in the program.

1.3 VICMON Functions

VICMON offers the following functians:
* Displaying chosen areas of memory,
* Changing contenis of memery locations.
* Moving blocks of memory.

Filling selected blocks of memory.
Searching memory for a pattern.

Examining and changing registers,

Setting breakpoints.

Executing programs with breakpoint control.
Storing and retrieving dota and programs.
Executing progroms at three different speer:!
options.

1.4 Starting the VICMON
System

The VICMON cartridge must always be
inserted or removed from the VIC with the power
aff. The cartridge is inserted into the expansion

port with the label on the cortridge facing up.

IFa VIC 1010 Memory Expansion Board is in
use, this should also be turned off, VICMON
may be used in conjunction with VIC 1212
Programmers’ Aid and/or VIC 1211A Super
Expander cariridges. However, please note that
some operations may conflict if changing trom
one cariridge to another, Therefore the VICmaoy .
have to be tumed off to effectively make the
switch, VICMON may also be used with
expansion RAM in the Memory Expansion Board.

To start using VICMON type 5Y524576 or
SYS6x4(396, and then press the RETURN key.

The VIC screen will now display the values
currently held in the 6502's registers. An example
is shown in Figure 1-1, VICMON is ready to
accepl your commands.,

* % % % 4 *

Figure 1-1 Anexompie inifiol VICMON display.

1.5 Command Format

Most VICMON commands are o single
alphabetic character followed by the command
parameters, if required, The commands are
explained in detail in Section Two. The
paramelers include the start address or start
and end addresses, op-codes, operands, hex
values, eic, The conventions and limitations for
thern are defined in Section 2.2,

Command statements (except for J) are
terminated and execution of them is initiated by
pressing the RETURN key.

A summary of the commands, their formats
and where they are described is given on the
back cover of this manual,

1.6 Entering Commands

Whilst the VIC is operating under VICMON you
are prompted with a “.”. To enter a command
simply typa the command letter(s) and the parg-
meter(s), if more thon one parameter is required,
separate them with spaces, commas, colons or
any other convenient symbol. The command
(except for J) is terminated and execution is
begun when the RETURN key is pressed.

1.7 Error Indication

Any errors you make when inpulting the
command stotements ore indicated by a question
mark following the position of the error. You
may rE-ZpE or correct the command using the
standard VIC editing facilities, Press RETURN
to initiate the corractad command.

SECTION TWO

2.1 Introduction

In Section Two, each VICMON command is
givenin alphabetical order. The required formalt
is shown and the purpose and funciion of the
command oare explained. A simple example is
included which shows the command, a typical
response when it is used and an explanation of

the results of executing it,
In Section Three a more delailed example is

shown using an aclual machine code program
which is then “debugged” using VICMON.

2.2 Conventfions

The parameters in the command formals are
represented as follows:

(addr] otwo byte hex oddress, e.g. 0400

(dev) asingle byte hex device number, e.g.
08

(opcode) a valid 6502 assembly mnemonic,
e.g, LDA

|operand) a valid operand for the preceding
instruchion, e.g. #%01

a single byte hex value, e.g, FF

a siring of literal dato enclosed in
quotes or hex values. Successive items
are seporated with commas.

{ref} o two byte hex oddress, e.g. 2060
{offsel] otwobyte hex offsel value, e.g. 3000

2.3 The Commands
23.1 A-—ASSEMBLE

Format : A (addr] ([opcode) (operand)

Purpose : Toassemble code starting from o
specified address.

The command allows you fo input assembly
code line by line and have it stored as machine
code. When the command is entered, the
np propriate code is writfen in memary

inning at the specified address. The address
u?ﬁwe next ovoilable memory location beyond
that required by the specified op code and
operand is then prompted awaiting input of
additional code.

To terminate the A command, simply press
RETURN when the new address is prompted,

If you input an illegal op code or operand,
VICMDN will place a question mark after the

(value]
[data)

THE COMMANDS OF VICMON

illegal quantity and will return you to the monitor
with o prompt {-} on a new line, if you fail 1o
specify either the op code or operand, VICMON
will ignare the line and return you tothe monitor
with a prompt (-] on a new line.

NOTE: All operands must be given as hex
;umber:-: preceded by o dollor sign, i.e. ryped as
rn
EXAMPLE : To enter the following machine
code:
LDA #3519
JSR$ FFD2
RTS
beginning at address $1600.
COMMAND: A 10003 LDA #3512 (RETURN)
DISPLAY : A1080LDA# $19
A 1002,
TYPE : JSR $FFD2 (RETURN]
DISPLAY : A 1000 LDA #3519
A 1002 ISR § FFD?2
A 1085
TYPE : RTS {(RETURN]}
DISPLAY - ATGGYLDA #$19
ATG92 ISR $ FFD2
AT9E5 RTS
A1 086
RESULT : The machine code equivalent of

the specified assembly languoge
code is stored in memory
location 1900 1o 1805 inclusive.

2.3.2 B— BREAKPOINT
Format B (oddr)
or: B (oddr], n

where n is a four digit HEX
number indicating how many
times that address will be
encounlered before the break
QCCUrs.

: To set a breokpoint so that o
ogram does not execute fully
Em instead stops at the specifi Ed

location.

A breokpoint allows you to run your program
up to a specified address. If you used G (see
Section 2.3.6) to initiate the run, the contents of

Purpose

the registers are displayed automatically,
allowing you to determine if they are as expected,
The Q) mode of execution (see Section 2.3.13)
will also stop at the breakpoint but the registers
will not be displayed. You will be switched to the
W mode. (See Section 2.3.18.) To display the
registers, press the STOP key and then use the R
command. [See Sechion 2.3.14.)

Note that the run terminotes before the
instruction in the specified address is execuled.
You must be careful not to set a breakpoint
between an op code and its operand or in the
midst of data, Doing so will couse the break-
point to be ignored and the resulting run to be
unpredictable.

It is possible to execute an address a specified
number of imes and break on the subsequent
pass, This is done by specifying the number of
iterations {the n in the formalt statement above).
it no number is given ofter the oddress, the
program will break when that address is
encountered the first ime.

Type in the breakpoint command and press
the RETURN key. Now run the program using
the G or Q3 command. The program will run up
to the breakpoint and stop (unless the program
has logical faults which prevent its reaching the
specified address).

You can only set one breokpoint befora you
begin running your program. When a break-
point is reached you may then set a new break-
point if you wish, You can resume the program
exacution after a breakpoint using any of the run
commands (G, Q, W, I}, i.e, you are not restricted
fo using the same method of running throughout.

Iif a breakpoint is never reached, execufion can
be stopped by pressing the STOP key and then
the RESTORE key. This will return you to BASIC.
You should re-enter VICMON and set an earlier
breakpoint lo isolale your problem. (See Section
Three.)

EXAMPLE . Assume that you have o program
in memory from location 106 to
location 1200. To stop the

program execution betore 1850
COMMAND: B 1858 (RETURN}
COMMAND: Q 100@ (RETURN]

RESULT : The program will slowly execute,
stopping before line 1858 is
executed, You will be left in the
WALK mode.

EXAMPLE : To seta breokpeint so that the

f}mgrnm will stop the third time
acation 11800 is reached:

COMMAND: B 1100, 8883 [RETURN])

4 COMMAND: G 1850 (RETURN])

RESULT : The program will run, stopping
before location 1108 is executed
the third time. The contenis of the
registers af that point will be
displayed in the format shown in

Figure 2-1.

Figure 2-1 Register Display

233 D-—DISASSEMBLE

Format : D {addr)
ar; D (oddr), {addr]
Purpose : To disassemble code trom o
specified point or between a
range of points,

NOTE: Forward or backword scrolling with the
cursor movement keys will continue o
disassemble code.

The D command enables you 1o convert the
code that is stored in the compuler’s memary
back into assembly languoge notation, You may
Hpe-ci? a beginning address in which case thot
line of code will be disassembled and displayed
in assembly language on the screen. The VIC
will remoin in the disassemble mode and you
may use the cursor to disassemble additional
lines of code, i.e. the cursor-down kay will
disnssemble the line(s) fallowing the specified
line and the cursor-up key will disassemble
preceding lines. Note, however, thot the dis-
assembly will not begin until the cursor reaches
the bottom {or top) of the screen and the scrolling
begins,

WARNING: Working backwards with the cursor
k?r may not give a perfectly accurate franslation
o

the code,

Alternabively, you may specify a range of
oddresses to be disossembled, The lines specified
will be displayed on the screen. If you specify o
range of addresses that is too long to be
displayed on the screen at one time, the screen
will scroll, The STOP key will terminate the
scrolling and you will remain inthe disassemble

mode. You may disassemble subsequent lines
with the cursor-down key.

While you are in the disassemble mode, o line
of code on the screen can be modified by simply
correcting or retyping the line and pressing
RETURN. The A command is autematically
activated. When you have made the change,
you remain in the A mode with the cursor
posifioned after the address on the line
following the corrected line, To terminate the
assemble mode, clear the screen and press

RETURN.

EXAMPLE : Todisassemble the lines of code
input in the example of the
assemble command and then to
change the address in the second
line to FFD@;

COMMAND: D 1080 10805 (RETURN)

DISPLAY . 1086 LDA #3519
1002 JSR § FFD2Z
1905 RTS

ACTION : Move the cursor so that it is
positioned aver the 2 in the FFD2,

TYPE ' @ (RETURN)

DISPLAY 1080 LDA #$19
A10P02 JSR FFFDY
A1905RTS

RESULT . The code from location 1688 to

location 1905 is disassembiled.,
The change is mode and then
stored with the RETURN key. You
are left in the ossemble mode.

2.3.4 E—ENABLE Virtval Zero Page
Format ; E {addr)

Purpose : To set aside a virtual zero page
sa that VICMON does not
interfere with your variables.

VICMON uses location $88 to $71 of zero
pﬂﬂe, The Kernal uses the rest of the zero page
and same of the $200-$80@ pages. Since your
program may assign variables which will be
stored on the zero page, running the program
may interfere with some of the information
already siored there, To prevent this, the E
command enables you fo set aside a virtual zero
page of 256 byies at another location. When o
virtual poge has been set and your program is
run, VICMON automatically swaps the zero
page contents with the virtual zero poge
contents, thus protecting the VICMON and
Kernal information. When program execution is
terminated, they are swapped again,

To disable the virtual zero poge when you
have your program running correctly, simply

use the E command with the zero poge address,
l.e. EODDO.

EXAMPLE : To set virtual zero poge beginning

ot location $1000:
COMMAND: E 1000 (RETURN)
RESULT : The locahions $1008 to $16FF will

be sat asida as a virtual zero poge.

2.3.5 F—FILLMemory
Format : F {addr), {addr], [value]

Purpose : Tohll memory between wo speci-
fied addresses with a given value.

The F command enables you 1o put o known
value into a specified block of memary. This is
useful for initializing data structures or for
blanking out the contents of any RAM area.
Simply specify the range of the block of memary
and the rn you wish to write in that block.
Naturally you should not specify addresses from
0000 to $1FF (pages zero and ane). Similorly,
if you gre using a virtual zero poge (see the E
command, Section 2.3.4) you sheuld avoid that
area as well,

EXAMPLE : Towrite 3EA (a no-op instruction)
from location $100¢ 1o $2000

inclusive:
COMMAND: F 1036@,2066 EA (RETURN)
RESULT : The no-op instruction [$EA] is
written in all the addresses from
1000 1o S2060.

2346 G-—-GO
Format -G
or; G {addr)

- To execute a progrom beginning
ot the location currently in the
program counter or beginning
from o specified address,

The G command may be used alone or stated
with an address. When G is used alone, the VIC
will execute the program in memory beginning
with the location currently in the program
counter. (To display the contents of the program
counter, use the R command s described in
Section 2.3.14.} When an address is given with
the G command, execution will begin at the
location specified,

The G command restores the registers 1o their
last known states and if a virtual zero page is
active (see the E command), exchanges
VICMON's zero poge with the virlual zero
page. Execution of your program will continue
until a preset breakpoint, if any (see the B
command) or until the end of the program is

Purpose

reached, unless the program has logical flaws.
If the execution is terminated by a breakpaint,
the contents of the registers at that point will be
displayed, If the program is terminated by RTS,
when that command is reached you will be
returned fo BASIC. If the last command is BRK,
when it is reached you will be returmed 1o
VICMON. If no terminator is attainable due to a
flaw in the program, you will have to use the
STOP and RESTORE keys to terminate the
execution, You will then be in BASIC and must
re-enter VICMON,

NOTE: If your program has changed the screen
and/or letter colours you may be unable to see
the READY or the register display.

For other means of executing programs, see
the], W ond Q commands, Sections 2.3.9, 18
and 13 respechively.

NOTE: Frequent breckpoints can prevent the
program becoming “runaway”.

EXAMPLE : Assume that you have a program
in memory and wish to begin
executing it from location $2000;

COMMAND: G 2000 (RETURN _

RESULT : The registers will be restored. The
PCwil?be setto $2004. if o virtual
zero page hos been established,
it will be swapped with the
VICMON zero page. The
prograom will begin executing at
$2000.

2.3.7 H—HUNT
Format . H {addr}, (oddr], {data)

Purpose : To search through a specific
block of memory and locate all
occurences of particular data or
character strings,

The H command easily locates any specified
characier pottern that is in the computer's
memory and displays it an the screen. You may
use this command to locate data, which is speci-
fied in hex, or fo find text strings up to 88
characters long (one line), which are specified
literally and preceded by a single quote mark.
All locations within the specified range which
contain the requested characters will be found.
I there ore more occurrences than will fit on the
screen, the screen will scroll. The STOP key will
terminate both the scrolling and the HUNT and
refurn you to VICMON. The control key will slow
down the rate of the scroll. When all occurences
within the range have been lacated, you will be
- returned to VICMON,

EXAMPLE : Assume thot the data siring
SAY2ZF3C is stored in memory

- EXAMPLE

somewhere between location
$CB0Y and location § COFF. To
locate the sfring:

COMMAND: H C80g,COFF.A9,2F3C
(RETURN)

: Memory is searched between
$CODP and $CAFF and the
location where $AF2F3C is
stored is displayed.

: Assume that the word
COMMODORE is stored in

memory in three locations
between $2000 and S3000:

COMMAND: H 2000,3860, 'COMMODORE
(RETURN)

: See Figure 2-2,

RESULT

EXAMPLE

DISPLAY

Lo T e el | D R Sd = =
S N .

i LI e L e P o o

o3 el | o D e 2 S

=it) o La K40 w160 0 g

Figure 2-2 Example of Character Striing Display.
2.3.8 I —INTERPRET

Format : 1 {addr}, (oddr)
or: 1 {addr)
Purpose : To locate ond display printable

text characlers within o specific
block of memory,

The I command will display in reverse video
any of the 96 printable CBM ASCI| code
equivalents occuring within the specified block
of memory. All other characters in the block will
be indicated by o dot (), If the specified block
more than fills the screen, the screen will scroll.
The STOP key will terminate the gcru“in aned
the control key will slow down the rate of
scrolling. When the specified INTERPRET is
terminated, you will remain in the I mode.
Pressing the cursor-down key will display any
CBM ASCII characters on the next line as the
screen scrolls,

: Assume that the hex codes for C,
carriage return, line feed, CB,
carriage relurn, line feed, and
CBM, carriage refurn, line feed

are stored beginning ot location

$1800:
COMMAND: T 1060 (RETURN)
DISPLAY : See Figure 2-3.

Figure 2-3 Display Printable Charocters

2.3.9 J— JUMP to subroutine.
Format - d

: To execute g subroutine call and
return withou! single-stepping
whilst running o program under
the W command.

The W command runs your program one line
atatime,i.e, after executing a ling, itwaits foran
input from you before proceeding. Whilst in this

&, you may wish fo execute a sub-routine all
atonce, for example, when you have already
checked it by single stepping. You may wish to
mave through the sub-routine guickly on
subsequent calls. The J command enables you
to do this, Simply press the | key when the line
containing the subroutine call is displayed. It is
not necessary to press the RETURN key. Note
that the J will not appear on the screen.

When the 1 commond is used, the correct return
address is pushed on the stack and the subroutine
is executed. When the final RTS instruction is
encountered, the program counter will be set fo
the return address which was pushed on to the

stack. You will again be in the WALK mode.

Purpose

EXAMPLE : Assume that you are in the WALK
maode and the following code is
on the screen:

147F LDA #5040

1481 JSR $A2C7
COMMAND: J
RESULT : $1484 is pushed on the stack, The

subroutine beginning ot $A2C7 is
executed, When the RTS is
reached, the stack is popped to
the PC. You are retumed fo W
mode.

23.10 L—LOAD
Format ;L “FILENAME", (dev)

Purpose :Tolood o program file into
memory from a specified device.

The L command enables you to read a load
file or a program file that is stored on cassefte or
on diskette and wrile it into the VIC's RAM, For
disk files, the address of the first location in RAM
into which the load file will be read must be the
first bwo I:::,'Ies ofthe file, Tope files hove the start
address as part of the initial header block.

NOTE: Only program files that have been
created using the S command of VICMON (see
Section 2.3.16) or SAVE in VIC BASIC may be

loaded with this option.

The command consists of L, the nome of the
file and the number of the device to read from.
The file name must be enclosed in quotation
marks and may be any legal VIC file name, The
device number of the cassette unit is 81. The
device number of the disk unit is 0B.

When the L command is used, the specified
file on the device will be read into memory until
an EQF is encountered, If the EQF is not
encountered, the LOAD will not terminate and

au will have to press the STOP and RESTORE
eys to stop it.

If the device or file is not present you will get
an error message and be returned to BASIC.
EXAMPLE : Assume that you have a disk

program file named TEST that is
258 bytes long, the first two bytes
of which are @CA, To read this
file into memory:

COMMAND: L “TEST", 88 (RETURN)

RESULT : The program nomed TEST which
is on the diskette in the disk unit is
loaded into memory from CAGA
to CBOD inclusively.

2.3.11 M—MEMORY
Format : M (addr), (oddr)
or: M {addr)
: To dajﬂ:llﬂ}f the hex code thot is

stored in a given block of
memory.

The M command will display the contents of
memaory from the beginning address in the
command up to and including the contents of the
ending oddress. The display will have the
address and five hex byles on a line, If only one
address is given in the command, five bytes will
be displaved beginning with the contents af the
specified address.

Additional groups of five bytes may be
disployed by causing the screen fo scroll, i.e.

Purpase

7

8

using the cursor control keys, Note that if you
specify o second address which is smaller than

e first you will wrop oround from the end of
memary to the beginning.

The contents of memary may be changed by
typing over the displayed values and then
pressing the RETURN key. If there is a bad RAM
location or if you attempt to modify ROM, a 2
will be displayed at the location of the impaossible

change.

EXAMPLE : To display five bytes of memory
beginning ol location $1800 ond
to change the 00 to FF;

COMMAND: M 1060 (RETURN)

DISPLAY . .1008 AQ B0 EA EA FF

ACTION : Position the cursor over the first @
of B0. Type FF and press RETURN.

RESULT : The five bytes of the memory

beginning af location §$1008 now

read AB FFEA EA FF.

2.3.12 N—-NUMBER

Format : N {oddr),[addr),(oHsel),
{lowlim] {uplim) W
where offset is o hex value indi-
cating the amount to be added 1o
the existing addresses and lowlim
and uplim specify the range of
the operands to be offset and W
Is an ophional command indicot-
ing that the range is a word
table.

: Te reassign absolute memory
addresses between specitied
rangeas when a program has been
relocated with the T command,

With the T command (see Sechion 2.3.17], you
can relacate your program to another part of
memory. Of course, if your program contains
absolute addresses, these addresses will no
longer be valid. The N command allows you to
automatically change these values. First you
must calculate the amount you have moved the
program. Note that if you have moved the
program fo a lower memory location, you must
colculate the wrap-oround value, e.g. if your
program was at $AMPD and is moved to 59408,
you have moved $6400 since SAB00 + $6400 =
$16400. The value $640@ is the offset.

With the N command you may change all
absolute addresses or only those within a specific
range. The range is established by seftingupper

Purpase

and lower inclusive limits, You must also specify

the block of memory in which the change is

required. VICMON will take each operand
within the block and add the amount of the offset
toit, i.e. it will overlook three bytes and add the

offset to the next two bytes, Of course, if you
want to change a word table, this would be
disasirous, but VICMON has provided for this
with the optional W at the end of the N command.
When the W is included, every word, i.e. every
two bytes, will be offset rather than os described
above,

WARNING: Do not use the N command in the
range of your data locations or you will destroy
the data’s usefulness.

EXAMPLE : Assume thot you have used the
TRANSFER command to relocote
your program. ltwas in locations
$1066 to $2000 and now is af
$1500 to $2500. To appropri-
ately adjust oll the absolute
addresses in that range:

COMMAND: N 1500,2500,0508,1000, 2000
{(RETURN]

: Within the code in locations
$1500 to $2584, dll absolute
addresses that foll between
$1000 to $2860 are increased by
500

2.3.13 Q—QUICK TRACE
Formaot : Q
or: G} ([addr)

- To run a program at o slow pace
beginning at the specified address
and checking for a breakpoint or
your use of the STOP and X keys
ofter each instruction is executed,

The Gt command, like the G command (see
Section 2.3.4), may be used alone or stated with
an address. When it is used alone, VICMON will
execute the program in memory beginning with
the location currently in the program counter,
(To display the contents of the program counter,
use the R command os described in Section
2.3.14.) When an address is given with the Q,
execution will begin ot the locatian specitied,

The Q command functions much asthe G
command with one major exceptian. Whilst G
turns program control completely over to the
CPU, Q executes one instruction ot a time,
checking after each step fo see if o breakpoint is
set or if you have osked for execution to
terminote. This breakpoint check allows you 1o
set breakpoints in ROM as well as in RAM,
When the breakpaoint is reached, execution will
stop and you will be in the WALK maode, (See
Section 2.3.18.) To display the registers at this
point, press STOP, R and RETURN.

The user interrupt caon be generated from the
keyboard at any point. Simply press the STOP
key and then the X key. Execution will be

RESULT

Purpose

terminated and the contents of the registers at
that point will be displayed.

EXAMPLE : To execute a program in QUICK
TRACE mode beginning at
$1804;

COMMAND: G 1000 (RETURN)

RESULT : Tha PCis set to 100@, The
registers are initialized. It o
virtual zero page {see the E com-
mand, Section 2.3.4) has been
established, it is swopped with
the zero page. Program execuhion
is begun at line 10060.

Formaot R

Purpose . To display the contents ot the
reqisters.

The R command enables you to view the
current status of the following registers in the

VIC 20's 6582:

program counter PC
status register SR
accumulator AC
index register X XR
index register Y YR
stack pointer SP

This can be useful when you are debugging o
orogram because the R enables you fo see it the
registers contain the values you expected. You
may also change the values in the registers whils!
in the R mode by simply typing over a new value
and pressing RETURN. The register display is
automatically generated when VICMON is
started up, when a preset breckpoint (see
Section 2.3.2) is reached in the G mode (see
Section 2.3.6}, and when o Q run (see Section
2.3.13) is terminated by the STOP and X key
combination.

EXAMPLE : To disploy the contents of the

registers:

COMMAND: R (RETURN)]
RESULT : Figure 2-4, for example.

ek 11

Wl
|T|

= L
i
= e
e S
= SR
L 1T

o
il
L

Figure 2-4 An example of Register Displays

2.3.15 RB—REMOVE BREAKPOINT
Farmat : RB
Purpose : Taremove a breakpaint.

Breakpoints are set by the B command [see
Section 2.3.2) and con be removed by the RB
command. Simply specify RB and the break-
Eaint which was set will be removed. If no

reakpoints exist when an RB is executed,
VICMON will interpret the command os if i

were on R and display the registers.

EXAMPLE : Assume that o breakpointwas sel
at location $1850. To remove that
breckpoint:

COMMAND: RB 1858 [RETURN]

RESULT . A breakpoint no longer exists ot
location $1050.

2.3.16 5—SAVE
Format . § “filename” (dev), (addr] {addr])

Purpose - To wrile the contents of a specified
RAM area to a particular device.

The S command enables you fo save a
program on diskette or cassette sothatit canbe
useg at a later time. The command consists of
the name of the file, the number of the device to
be written 1o and the start and end address of the
RAM block, The file name must be enclosed in
quotation marks and musi obey the syntax rules
for VIC files, i.e. it must begin with an
alphabetical character and be no more than 16
characters long. The device number of the
cassele unit is @1 and of the disk unit, 8. The
final oddress must be one larger than the
location of the last byte you wish to wrile.

WARNING: If the final address is not one larger
than the location of the last byle you wish to
save, the last byte will be lost,

If the specified device is not present you will
getan error messoge and be returned fo BASIC.

NOTE: VICMON will nof save memoary obove
$7FFF. i.e. the start address must be 58800 or
greater but not larger than $7FFF and the end
address must be greoter than $0000 but no
largerthan § Ifyou affempt fo save memory
oulside this range, only the file header will be
saved, i.e. no data or program will be written,

EXAMPLE : Assume that you have a program
in memory from locotion $1860 to
$10FF. To write that program o
the diskette in the disk drive,
naming that progrom TEST 1:

COMMAND: § "TEST1",08,1000,1106
(RETURN)

. A file named TEST 1 will be
written on the diskette. It will

RESULT

contain the code thal was in RAM
location $1000 to $10FF inclusive.

2.3.17 T—TRANSFER

Format : T (addr},{addr),{addr}

Purpose : To transfer the contents of a block
of memory from one area of RAM
to another.

The T command enables you to relocate your

program or data to another part of the memory.

This can be useful if you wish to expand o

program or o use part of a program elsewhere

without retyping. The command consists of three
addresses. The firsl two indicate the block of
meamory to be duplicated. The third oddress
indicates the starting address for the copy.

Iif o program is transferred and the program
contains absolute addresses or word fables,
these specifications in the new location will not
be accurate, The N command (see Section
2.3.11) allows you fo offset these values by the
appropriate amount 5o that the relocated
program will run property.

EXAMPLE : Assume that you have a block of
data in memory from location
$3600 1o $3500. To move that
dota fo a new location beginning
at pAe: -

COMMAND: T 3900,3501, 4000 [RETURN)

RESULT : The data is now in the block
$3003 to $350¢ and in the block
$4000 1o $4500,

23.18 W—WALK

Formaot s W

or:' W (Dddr]
Purpose : To execute a progrom one

instruchion af a fime.

The W command executes the line of code
indicated by the address in the program
counter, if W is used alone. Alternatively you
may specify the address of the instruction fo be
exacuted.

When using W, the first instruction is executed
and the second instruction will appear on the
screen. YICMON will wait for you to press the
space bar before it will execule the second line,
When the space bar is pressed, the line will be
executed and the next line displayed. In this way
you can WALK, i.e. single-step through the
program. 1o return o VICMON from W, press
the STOP key.

You may use the R command lsee Section
2.3.14] to display the contents of the registers at
any poink. Press STOP, then the R key and then

10 RETURN to accomplish this,

Each subroutine must be single-stepped as
well, unless you use the J command to treat the
enlire sub-routine as one step (see Sechon 2.3.9).

EXAMPLE : Tosingle step through a program
beginning ot location $1009:
COMMAND: W 1803 (RETURN)

RESULT . The instruchion stored ot address
$ 1060 is executed and the nexi
instruction is displayed.

ACTION : Press the SPACE BAR,

RESULT : The second instruction is executed
and the third instruction is
disployed.

2.3.19 X — EXIT ro BASIC

Format - A

Purpose : To terminate VICMON control
and return to BASIC.

Use of the X command returns you o BASIC,
Your program will remain in memory butany

breakpoint or virtual zero page assignmenis
will not be praserved.

EXAMPLE : To exit VICMON:
COMMAND: X [RETURN)

RESULT : You will be returned o BASIC and
prompted with READY,

I

SECTION THREE

USING VICMON AS A
DEBUGGING TOOL

1.1 Introduction

The following is an example which shows

some of the edifing and foult tracing facililies of CLEAR
VICMON. It uses a 6502 assembly languoge SCREEN
rogram and VICMON to show how an error is

ocated in the progrom and fixed. More details St COUNTER
on the individual commands used here are TO ZERO
given in Section Two. 3

If you wish to try the example, follow the
instructions beginning in Section 3.3. If not, if is Ly
suggested that you ot legst read through the
example.

ADD ONF

3.2 The Example Program JocoT=

The program used in this section writes a
screen full of each of the printable characters in

turn. Two screen posifions are left blank to
preventthe screen from scrolling, A flowchart of
the program is shown in Figure 3-1.

(start)

The program uses the ROM routine $§FFD2 to MOVE ZERD
print a character, First, the screen is cleared by FHCHAR
the following commands: g |

LDA #5923 SET PCANTER
ISR $FFD2 mi“““

Then a loop fills all but the last two character
positions on the screen with spaces. There are , > PRI
506 character locations possible on the screen, A '
so 504 have to be filled, This is equivalentto two
lots of 252 {$FC). '”,.'gﬁ%?

Once this has been done, an indirect pointer
to the screen is sef up in zero poge, using the
contents of $P28B to point ta the start of the

screen. Two isadded fo this ta reference the end
of screen for testing. Using a loop, the screen
lall positions filled with spaces) ore filled with
the first character (value @) then the second and
so on until all 256 characters have been in each
posilion on the screen where there hod beena

space,
It is necessary to print {o the screen fo ensure

ADD 1 TO
CHAR

that characters appear when they are stored
direclly to the screen area (STA ($81),Y). It is
possible to store values in the colour RAM area
of memory instead but this requires the use of an
additional indirect pointer.

The page number of the screen is stored in

(masH)

Figure 3-1 Flowchart of Example Program

1

12

iocation 30288 which means the screen starts ot
${$0288)00. This method is required because if
yau use expansion memory, the location of the
screen RAM alters,

3.3 The Procedure
3.3.1 INPUTTING THE PROGRAM

These are the steps to input the program
described above and to locate o faultin it insert
the VICMON cartridge into the VIC or VIC
expansion board, Switch on the computer {and
the expansion board if you are using one}. Then
type SYS (6% 4896} to start VICMON. Next using
the A command [see Section 2.3.1) type in the
following code;

1900 LDA# $93
1002 ISR $FFD2
1805 LDY #3508
1007 LDX # 500
1007 LDA 3 520
1908 JSR $FFD2
100E INX

180F CPX #3$FC
1811 BNE $1009
1813 INY

1074 CPY # $02
1016 BMI $1609
1018 LDX # 500
101ASTX 301
121C LDA $B288
101F STA $02
1821 CLC

1822 ADC 7+ 562
1024 STA $00
1826 LDY #5060
1028 TXA

1029 STA (801},
18928 INY

182C BNE $1829
182E INC $02
1630 LDA %02
1632 CMP $6@
1834 BNE 31029
1636 INX

1837 BNE 3101C
1639 BRK

T1E3A BRK

Once you have entered the program save it
on the cassette unit (see Section 2.3.16) with the
following command:

S “PROGRAM” 81,1000, 183A (RETURN;}
(To save to diskette, substitule 08 for @1 in the
above command.)

This is a safeguard so that you do not hove to

type the program in again, if for example,
power fo the computer is lost,

Assuming that the program will waork first time
(a rare occurrence with machine code programs),
use the GO command (see Section 2.3.6) and

fype:
G 1006(RETURN)

If you have typed in the program exactly os
listed above, the top half of the screen will display
a series of characters very rapidly, The bottom 3
lines of the screen will be blank. After a very
shorttime the program will finish and the screen
will oppear as shown in Figure 3-2.

.1

e
e
44
% ¢
-
e
L ol i
-
L

07 1ttt

i

Figure 3-2 Result of first attempt to run example
program

3.3.2 LOCATING THE FAULT

Ohbviously something has gone wrong ond
you must locate the problem. Here is a typical
technique. First, split the program up into two
sections, the first of which will clear the screen
and fill it with spaces. This section ends at $1018,
so set a breakpoint [see Section 2.3.2) a1 $1018

oy vping 1818 (RETURN]
B
So that you can seewl'um isl-‘!lt:lp-peﬂing, change
the character printed from a spoce ($28) toan A
($41). Do this with:
A 1009 LDA # $41 (RETURN) (RETURN]

To slow the operation down, use the quick
troce option (see Sechion 2,313}

Q 1802 (RETURN]

This executes the pragram at a pace much
slawer than normal. |

if you are using zero page locations for your
pragram, it is advisable (and usvally necessary|
to make use of the virtual zero page option {see
Section 2.3.4) because VICMON uses the zero
page and your program and YICMON may
overwrite each other. This option is not required

in this firsl section, but will be required in the
second,

Since enabling the virtlual zero poge before
the quick trace is executed will result in foking
ﬂpft:rnxim ately 2 minutes to clear the sereenand
at least twice that ime to fill it with choracters
afterwards, do not enable it now.

As the section of code ($1008-51318) executes,
you will notice that rather thon stopping 3 lines
short of the end of the screen, the characters
overflow the end of the screen. The screen scrolls
up (4 lines} and then an extra 2 characiers are
printed. This means tha! 4 unwanted characters
are being printed, The most likely couse of this is
that the lest for the number of characters printed
is being performed incorrectly, The value in the
X register should run between $0@ and $FC
while Yis@ond Yis 1. If you lock carefully you
will notice that once the value of $FC is reached
in X, the value of Y is increased, If it is fess than 2,
a space {“A"] is loaded info the accumulator
and is printed. This means that X goes $80-$FF,
$00-$FC giving the four exira characters. To fix
this, the branch ot $1816 must be altered to point
to $1007 instead of $1889, Since quick trace
leaves you in walk mode, you must press STOP
to return to YICMON, Nexi, type:

A 1916 BMI $1097 {RETURN} (RETURN]
it you now type:
() 166 (RETURN|

the rautine will stop ot the correct point on the
screen and appear as in Figure 3-3.

3
30|

312233222113 I2DIDY
rITr33223312233123D
=31223322211131122121
¥IT13222322T1222121

B3 (O O 0 et 8 0 N 3 (00
4 0 0 O 8 O N gmemn 1 i
21211333 2:22T113T1D

e
3Py
=
A
A
a
25
o
B
i

BIDIIIDSDIDIDIDIFDLE
T2IIIIITTIIDISDDIDY
I123323713223220F

32111222222 321121

Figure 3-3 Screen filled with A's

Atthis point you can see that the first part of
the roufine worked fine. Now you should enable
the virtual zero page. Press STOP, then type:

E 1860 (RETURN)
This will assign the virtual zero page to @

block of memory starting ot location $1808.
Now exacute the code o a slow rate starting
where it finished betore, i.e. $1018 as indicated
by the PC, The QUICK TRACE mode will allow
you to go slowly, stopping execution if you need
o, so type:

(3 (RETURN

The A's on the screenwill start turning into @ s
until about half way down the screen (257th
character). The remaining A's will be replaced
by left arrow symbols. Then the @ s will start
turning bock to A's. However, when the last @
changes, nothing will happen to the screen fora
shorttime and then the A's will begin turning into
B's. The left arrow symbaols will remain. Note
thatthe screencharacterfor@is @ , 1isA, 2is B,
ete.

Press STOP and X together to interrupt the
pra«grum, because, asyou can see, there isstill a
problem,

Use the WALK command (see Section 2.3.18)
to single step through the progrom to see if you
can spot where the wrong charocler is coming
fram, Type:

W 1018 (RETURN)

After o period of time (the interval depends
upon whether you press the SPACE BAR or hold

it down} the following will appear on the screen:

1610 2EINC 32

1930 LDA @2

1832 CMP 08¢

1634 BNE 1829

1929 STA (81),Y

Atthis pointthe accumulaior contains the high

byle of the screen pointer [for the second huh? of
the screen). This shows up as a lefl arrow on the
screen. If you terminate the WALK mode (press
the STOP key) ond display the registers by
typing R (RETURN) {see Section 2.3.13), you will
Saea:

K
PC SR ACXR YR SP
1928 AD 1F 90 00 F2

The values of PC, SR, YR may vary depending
on when you prassed the STOP key, i.e. which
instruction is to be performed next.

Al this stage of the progrom, the accumulator
should contain the same value as the X register.
As the high byte of the screen pointer is loaded
into the accumulator, it is necessary to transfer
the value from the X register into the occumulator,
The instruction for that is TXA which is at $1028,
so the branch to $1029 must be changed. Type:

A 1934 BNE 1028 (RETURN) (RETURN]

Note that the branch ot $182C does not need

to be altered because the value of the
accumulator is not altered within this inner loop.

13

Remove the breakpoint, restore the spaces in
the initial step, and save the program again, by
fyping:

RB (RETURN)

A 1009 LDA$28 (RETURN) (RETURN)

S "PROGRAM” 01,1000,183A (RETURN)
G 1008 (RETURN)

It should now work. If it does not, caompare it
with the following program, by using the D
command to display the stored code. Spot the
difference, and make any necessary alterations
by using the A command. Remember, when
wriling your own programs or routines you
would not have a correct copy of the program to
compare with. However, the same principles of
sefting breakpoints, executing slowly and
checking registers applies far any progrom.

.. 1000 LDA # 593
.. 1882 JSR $FFD2
., 1885 LDY #3%06
., 11307 LDX #3060
., 1009 LDA #%20
., 1988 JSR $FFD2
., TOPE INX

.. 18F CPX #8FC
.. 1811 BNE 31009
. TA13INY

- 1814 CPY #$62
.. 1816 BMI $1067
., 1018 LDX #$bp
.. 1O1A STX $01

.. 101C LDA $0288
.. I61F STA $92

¢ 18921 CLC

., 1922 ADC #$02
.. 1824 STA 500

., 1826 LDY #%p
o TO2BTXA

. 129 STA (881},Y
.. 102B INY

.. 1B2C BNE $10829
. 1@2EINC $92

., 1833 LDA 302

-, 1832 CMP $00
., 1834 BNE $1028
., 1836 INX

.. 1837 BNE $101C
.. 1639 BRK

.. 1B3A 222

3.4 Summary

Here is o summary of the steps to follow to use
VICMON to debug your own programs:

Initialize VICMON,

Load your program with L

or type it in and SAVE it

Attempt fo run the program from the start

address using G.

Set breakpoints to determine area of fault.

Disassemble faulty section (or all of

program, if it is short) using D. It is

preferable to list the disassembled code on
your printer.

6. Qluick i'?lzlce'_ through the faully section,

especially if it involves screen displays.

Walk through the faulty section.

Display registers ot various points to check

values, if necessary. Use M and 1o disploy

areas of data or werking variables,

9a. Use A to correct faulty code.

b. Use M to correct faully data.

10. Keep a nole of changes made. Save the
pragram frequently.

11. Remember that you may need to use virtual
zero page (E) while you are using the quick
trace and walk options.

12. IFyou connot find the problem, go back to

your flowchart(s) and re-think your logic.

bk w o~

@~

SURLS

Absolute addresses
Addr

Address convention
ASCII, CBM
ASSEMBLE
Assembly Language
Backward scrolling
BASIC, return to
BREAKPOINT
Breakpoint, remove
BRK

CBm ASCII

Chonge absolute aoddresses
Change memory
Change register values
Commands, entering
Commands format
Command terminalor
Control, key
Cenventions, farmat
Correcting errors
Data

Debug

Device Number
DISASSEMBLE
Display initial
Display, memaory
Display registers
Dollar sign

ENABLE Virual Zero Page
EOF

Error indicatar
Example program
Execute a program
Exit to BASIC-X
Expansion Board with VICMON
Expansion RAM with VICMON
Faults in program
FILL memory

GO

Hex code, display
Highlim

HUNT

Initial display
INTERPRET

lterations, number of
JUMP

Kernal

LOAD

Load file

Logical faults

Lowlim

Machine code

INDEX

34,11

,6,79,10
,6,8

o B = 0 O L) LD OO

Lo B3 OO M R BRI O 00 00 O O D L

-

5,68
4.9

-] = e ()~

422,10

— 21 Lh LD
—

-
S

1
1,12
4,6,11,12

Lh
[4.4]

ey

— 00 e Sl N g e D= O Q0 I U
o~

o

3.9.11,14

MEMORY

Memory change

Memory Exponsion Board,
VICMON with

Memory, FILL

NUMBER

Number of iterations

Offsat

Op Code

Operand -

Patern

Program Counter

Program Execution

Program file

Programmer’s Aid, VICMON with

Prompt
Qluastion mark
QUICK TRACE
Qluote, single
RAM, bad location
Eﬁ.{d, expansion, with VICMON
e
Reference reading
REGISTERS
Registers, display
Relocate
REMOVE BREAKPOINT
RETURN as terminator
Return to BASIC
ROM, attempt to modify
RTS
Runaway
SAVE
Scrolling
Single quote
Single stepping
Stack
Starting the VICMON system
STOP key
Strings
Subroutine
Super Expander, VICMON with
?Ys Fil
a les
TEﬁdSFEE
Virtval Zero Page
WALK
Wrap around
Word table
X and STOP keys
X-EXIT TO BASIC
Zero Poge

PRI R =t | LA A QI LOO) e €O LN — GO~

-
(e}

e
w
e
=

b

OO 00 = K D mt e N s (3 — 0D O
~ o

ol
“0

15

SUMMARY OF COMMANDS

Commaond Syntax Page

Assemble A (oddr),lopcode], |U|;:.uc,|nd| P

Breakpoint I et e s e o s
or B [oddr|,n

Disassemble D (oddr) e e ey, 4

or D |(addr], Iuddr

Enable Vinual ZeroPoge E laddr} e e S A e A

Fill Memaory F.Ddrlr“nddrlwull.u. i 5

Go G R S e A TR W i B TS 5
DFG}_ﬂddr}

Hunt (S IonOr) BB « i cnnn s s R s s D

Interprel b OB AT s e i A e e A R e G D
or | [addr|

Jump to subroutine e O A o A D R e T

Load L “hlename”,[dev)c.... _ s e R T s]

Memory L B T e I el T s e TR |
or M -laddr]

Number N {oddr),(oddr},(oftset] (lowlim},juplim)W B

Quick Trace "1 s = 3 o e T 8
or Q [addr)

Registers R . R R R R P R e R R s s

Remove Breakpoints RB . T o o e ey O

Sove S Flit—:nunm Idev gddrllnddr . I IS e

Transfer Tlnddrl[uddruluddr T ee———— |

Walk W IR =) o R A0 |
DrWIﬂddr

Exit to BASIC R Soes v vy g R A N T T LR R Ty |

All commands except | are terminaled and execution is begun by pressing the RETURN key,

The parameters in the command formats are represented as follows.

laddr| a two byte hex address, e.q. 0400

[dev] a single byte hex device number, e.g. 08

lopcode] avalid 6502 assembly mneumonic, e.g. LDA

(operand] avalid operand for the preceding instruction, e.g. %01

[value| a single byte hex value, e.q. FF

(datal a string of literal dota enclosed in quotes or hex values. Successive items are separated
with commas.

[ref) a two byte hex address, e.g. 2000

|offset) a two byte hex offset value, e.q. 3000
To start monitor, type SYS24576 or SYS648%96

" commodore

COMPUTER

	manual_front.jpg
	manual_01.gif
	manual_02.gif
	manual_03.gif
	manual_04.gif
	manual_05.gif
	manual_06.gif
	manual_07.gif
	manual_08.gif
	manual_09.gif
	manual_10.gif
	manual_11.gif
	manual_12.gif
	manual_13.gif
	manual_14.gif
	manual_15.gif
	manual_16.gif
	manual_17.gif
	manual_18.gif
	manual_rear.jpg

